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a b s t r a c t

Privileged information learning is proposed to construct the classifier by incorporating privileged
knowledge. At present, most of the privileged information learning methods assume that the instance
is accurately labeled. However, in real-world applications, an instance may be weakly labeled. In
this paper, we propose a novel privileged information learning method with weak labels (PLWB).
The hypothesis of our work is that an instance may be annotated by a number of labelers and
different labelers may give different labels to this instance due to distinct professional knowledge and
subjective factors. It leads to ambiguous labels of instances, namely weak labels. To solve this problem,
our methodology is to give each labeler a weight and incorporate these weights into a privileged
information learning model. Our technique is to employ a heuristic framework to optimize the labeler
weights and the privileged information learning model jointly. The existing privileged information
learning methods do not consider the weak label problem, and assign an equal or random weight
to each labeler. Our work is different from these methods. The novelty and theoretical contribution
is that this is the first work to deal with the weak label problem in privileged information learning.
The merit is that we assign an unknown weight to each labeler and solve the optimal values of these
weights in the optimization process, such that the performance of the learning model can be improved
with the optimal labeler weights. In the experiments, the tool that we use is MATLAB, in which we
implement our algorithm. The experimental datasets include one handwritten categorization dataset,
two image classification datasets (i.e., Animals-with-Attributes dataset and Caltech-101 dataset), and
one disease diagnosis dataset (i.e., Alzheimer’s Disease Neuroimaging Initiative dataset), in which the
number of instances used is 2000, 6180, 8677 and 202, respectively. The obtained results are that: (1)
by optimizing the labeler weights, the proposed PLWB method obtains explicitly higher classification
accuracy than the existing privileged information learning methods; (2) PLWB has relatively higher
training time since it needs to solve the labeler weights in the optimization process.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background

Traditional supervised learning uses only the training data
o construct a model. However, in real-world applications, we
ay collect some extra information that is available only in the

raining process, but not available in the testing process. Consider
n example of facial expression detection in video surveillance.
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polat@ibu.edu.tr (K. Polat), a.alhudhaif@psau.edu.sa (A. Alhudhaif).
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568-4946/© 2023 Elsevier B.V. All rights reserved.
In the laboratory environment, we can obtain not only the low-
resolution facial expression images but also high-resolution facial
expression images. The utilization of high-resolution facial ex-
pression images can effectively refine the capability of classifiers.
However, in the practical scenarios of video surveillance, we
usually get only the low-resolution images that are collected by
the surveillance cameras. The high-resolution images are avail-
able only in the training process, but not in the testing process.
Although the high-resolution images are not obtainable during
the testing process, they can be incorporated into the training
process to reinforce the classifier from the low-resolution im-
ages. Here, the additional information which is available only in
the training process, but not available in the testing process is

called privileged information [1]. Privileged information learning
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ims to incorporate privileged information into improving the
lassification performance of classifiers.
Privileged information learning is an important research field

n machine learning and computer vision. Considerable works
ave been done on privileged information learning. For example,
apnik and Vashist [1] proposed a learning paradigm, called
rivileged information support vector machine (SVM+). SVM+

oosts the classification performance of SVM by utilizing
rivileged data. [2–4] introduce privileged information into the
ulti-label learning problem. Since training an SVM+ classifier is
omputationally expensive, several studies [5–8] are put forward
o speed up the training efficiency of SVM+.

.2. Motivations

Although privileged information learning has made much
rogress, most of the existing works [9–12] assume that the
nstances in privileged information learning are well labeled.
evertheless, in practice, the instance labels may be ambiguous,
hich is considered as a weak label learning problem. On the one
and, annotating data is usually a time-consuming labor process.
f the amount of data is large, correctly labeling all the data may
e challenging for the labelers. On the other hand, an instance
ay be labeled by multiple labelers. Considering that different

abelers may have distinct professional knowledge and subjective
actors, they may not give exactly the same label to the instance.
ost of the existing privileged information algorithms [13–16]
ssume that the instance is accurately labeled, and privileged
nformation learning with weak labels has not been considered.

.3. Novelty

In this paper, we solve the problem of weak labels in privi-
eged information learning where the training data and privileged
ata are associated with ambiguous labels, rather than accurate
abels. To tackle this problem, we put forward a new privileged
nformation learning method with weak labels (PLWB). In the
roposed method, considering that each instance is annotated
y multiple labelers, we assign each labeler a weight and use
he weighted labels to represent the instance label. These labeler
eights are then incorporated into the SVM+ model. A heuristic

ramework is put forward to learn the privileged information
earning model and update the labeler weights alternately. The
ain contributions of our work are shown as follows.

• The privileged information learning problem with weak la-
bels is introduced. To the best of our knowledge, this is
the first attempt to deal with the weak labels in privileged
information learning problems.

• Rather than randomly or equally assigning the weight to
each labeler, we update the weight of each labeler in our
heuristic framework. These labeler weights are incorporated
in the training phase to boost the performance of classifiers.

• We conduct experiments on the handwritten categoriza-
tion, image classification and disease diagnosis datasets.
The numerical results have demonstrated that compared to
the existing privileged information learning methods, PLWB
achieves improved classification performance.

The rest of this paper is organized as follows. The existing
ork on privileged information learning is discussed in Section 2.
he details of the proposed PLWB method are presented in Sec-
ion 3. Experiments are conducted in Section 4. The conclusion

nd future work of this paper are given in Section 5. a

2

2. Related work

2.1. Learning privileged information

(1) State-of-the-art techniques
Privileged information provides guidance for the learning of

classifiers. It is obtainable only in the training process, and not in
the testing process. Vapnik and Vashist [1] showed that privileged
information can help to improve the performance of a classifier.
Then, they propose a privileged information learning algorithm,
called SVM+. The SVM+ model is widely used in practical ap-
plications. Sabeti et al. [17] leveraged SVM+ and uncertainty
labels to detect acute respiratory distress syndrome. Sharmanska
et al. [18] put forward a ranking SVM+, which can transfer
the similarity of original data to privileged data by using the
privileged information from image tags or bounding boxes. Due
to the expensive computation of the L2-norm SVM+ model, Niu
and Wu [19] proposed a novel SVM+ model, which replaces the
L2-norm with an extended L1-norm. The optimization problem is
formulated as a linear programming (LP) problem, and the com-
putational cost is less than L2-norm SVM+. Sarafianos et al. [20]
extended SVM+ to domain adaptation and proposed the adaptive
SVM+ in which the privileged information of the source domain
s transferred to the target domain. Lapin et al. [21] tried to find
he connection between the SVM+ solution and weighted SVM.
hey have found that the information of privileged features can
e represented by the weights of instances. It can help us to
learly understand the limitations of SVM+, and the link between
he SVM+ algorithm and weighted SVM.
2) Implications from the literature

Despite much progress on privileged information learning,
he existing privileged information learning algorithms are pro-
osed based on the assumption that all the training instances
nd privileged instances are accurately labeled. That is to say,
ifferent labelers give the same label to one instance and there
s no ambiguity in the instance labels. They build up the classifier
irectly using these labels and the obtained classifier is then used
o predict new instances.
3) Research gaps identified

However, in real-world applications, an instance may be an-
otated by a number of labelers. Due to distinct professional
nowledge and subjective factors, different labelers may give
ifferent labels to the instance. It leads to ambiguous labels for in-
tances, namely weak labels. The existing privileged information
earning works do not take weak labels into account. In this paper,
e put forward a new privileged information learning method
ith weak labels. It can handle the training data and privileged
ata which are in weak labels.

.2. Learning with weak labels

1) State-of-the-art techniques
In real-world applications, we may collect a large number of

nstances to train the classifier. Correctly labeling all the instances
s time-consuming for the labelers. Thus, it may be difficult for the
abelers to give an accurate label to each instance, which leads to
he ambiguity of instance labels. Sultani and Shah et al. [22] an-
otated multiple instances of the same action in a weakly labeled
ideo. Liu et al. [23] incorporated the incomplete multi-view data
nto weak label learning and developed a novel model which can
imultaneously learn from missing labels and incomplete views.
hoi et al. [24] proposed a framework which uses a local detector
nd global classifier to detect the weakly labeled acoustic event.
o tackle the multi-instance multi-label learning problem with
eak labels, Yang et al. [25] assumed that if the labels are highly
orrelated, they should have common instances. Then, the margin

mong the class means of bags is maximized.
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Fig. 1. The schematic diagram of PLWB.
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2) Implications from the literature
Most of the existing weak label learning methods [25–28]

ssume that only the training instances are available during the
raining stage. They learn the classifier on the training instances
nd predict the new instances using the obtained classifier. How-
ver, in practice, we may get some auxiliary classification infor-
ation (namely privileged instances), in addition to the training

nstances. These privileged instances contain some kind of classi-
ication information and can be used to boost the classifier learnt
rom the training instances.
3) Research gaps identified

The existing weak label learning methods use only the training
nstances to build the classifier, and the privileged instances have
ot been taken into account. Introducing the privileged instances
nto the training process can help to refine the classifier and boost
he classification accuracy. It motivates the work in this paper.
herefore, we put forward a novel privileged information learning
ethod with weak labels.

. SVM+ with weak labels

.1. SVM

Support vector machine (SVM) is a traditional binary class
lassification method. Consider a binary class dataset D =

(xi, yi)|i = 1, . . . , l}, where xi is the ith instance and yi ∈ {1, −1}
s the label of xi. SVM aims to learn a hyper-plane which separates
he positive instances and negative instances, and the margin of
he two classes is then maximized. Let f (x) = (w, x) + b be
the hyper-plane, where w is the norm vector and b is the bias.
To learn this hyper-plane, the objective function of SVM is as
follows:

min
w,b

1
2
∥w∥

2
+ C

l∑
i=1

ξi

s.t. yi(w, xi) + b ≥ 1 − ξi,

ξi ≥ 0,

(1)

where C denotes the penalty parameter; ξi is the slack variable.
From the learning problem (1) of SVM, we have the following
3

observations. On the one hand, SVM utilizes only the training data
xi to build up the classifier, and the privileged data cannot be
utilized to boost the performance of classifiers. On the other hand,
SVM assumes that all the instances are accurately labeled and the
ground-truth labels yi are known. It does not take the weak label
roblem into account.

.2. PLWB formulation

Different from SVM, the proposed PLWB method considers
he weak label problem and incorporates the privileged infor-
ation into improving the classifier. Let the training dataset be
= {(xi, x∗

i , Yi)|i = 1, . . . , l}, where l denotes the number of
instances. xi is the input training instance and x∗

i is the privileged
information of xi. Yi is the label of xi. In the training process, both
the training information and privileged information are available
to construct the classifier. In the testing process, only the testing
instance is available and the privileged information is unavailable.
If it has Yi ⩾ 0, the instance is labeled as positive. If it has Yi < 0,
he instance is labeled as negative. In practice, the instance xi may
e annotated by multiple labelers and Yi is determined by labels
y1i , y

2
i , . . . , y

m
i }, where m is the number of labelers; yji ∈ {−1, 1},

= 1, 2, . . . ,m, is the label given by the jth labeler. The goal of
ur method is to learn a privileged information learning model
n the data with weak labels.
Fig. 1 shows the schematic diagram of PLWB. In privileged

nformation learning, the training set contains the training in-
tances X and privileged instances X∗. Each training instance xi is
nnotated by m labelers. The labels given by the m labelers are y1i ,
2
i , . . . , ymi , respectively. Due to distinct professional knowledge
nd subjective factors, different labelers may give different labels.
hat is to say, the m labels y1i , y

2
i , . . . , ymi may not be the same,

hich leads to the ambiguity of instance labels, namely weak
abels. To deal with the weak label problem, we assign each
abeler a weight rj, and represent the label of instance xi as Yi =

m
j=1 rjy

j
i. To optimize the labeler weight rj, a heuristic framework

s adopted. In this framework, we first initialize the labeler weight
j and train the classifier f (xT ). Then, we fix the classifier f (xT )
nd update the labeler weight r . These two steps are conducted
j
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lternately until the algorithm stops. When the algorithm stops,
he labeler weight rj and the classifier f (xT ) are outputted to
redict new instances.
Our method is explicitly different from the existing privileged

nformation learning methods. The existing methods do not con-
ider the weak label problem. They assume that the training
nstances are accurately labeled. That is to say, different labelers
ive the same label to one instance, i.e., y1i , y

2
i , . . . , y

m
i being

he same. There is no ambiguity in the instance labels. Different
rom the existing methods, our method takes the weak label
roblem into account. Due to distinct professional knowledge and
ubjective factors, different labelers may give different labels to
ne instance, i.e., y1i , y

2
i , . . . , y

m
i may not being the same. There

xists ambiguity in the instance labels. To deal with the label
mbiguity, the PLWB method is proposed.
Let f (x) = (w, x) + b be the hyper-plane in the training space,

and f ∗(x) = (w∗, x) + b∗ be the correcting function. In Eq. (2),
we construct the slack ξi which is comprised with the error term
ξ ∗

i and the smooth function (w∗, x∗

i ) + b∗. To make sure that the
slack ξi is larger than 0, we let the error term ξ ∗

i and the smooth
function (w∗, x∗

i ) + b∗ in Eq. (2) larger than 0, as shown in (3).

ξi = [(w∗, x∗

i ) + b∗
] + ξ ∗

i , i = 1, . . . , l (2)

(w∗, x∗

i ) + b∗
≥ 0, ξ ∗

i ≥ 0, i = 1, . . . , l (3)

Based on this, the learning problem of PLWB can be formulated
as

min
ξ∗
i ≥0

1
2
∥w∥

2
+

γ

2
∥w∗

∥
2
+ C

l∑
i=1

[(w∗, x∗

i ) + b∗
] + θC

l∑
i=1

ξ ∗

i

s.t.
m∑
j=1

(rjy
j
i)[(w, xi) + b] ≥ 1 − [(w∗, x∗

i ) + b∗
] − ξ ∗

i ,

(w∗, x∗

i ) + b∗
≥ 0,

m∑
j=1

rj = 1,

0 ≤ rj ≤ 1,

(4)

• where w and b are the corresponding norm vector and bias
referring to the training data. w∗ and b∗ are the correspond-
ing norm vector and bias referring to the privileged data.
C ≥ 0 is the regularized parameter. ξ ∗

i is an error term,
which is added to make the correction function smoother.
θ ≥ 0 is used to tradeoff the slack variable ξ ∗

i and the
other terms in problem (4). γ ≥ 0 controls the influence
of privileged information on the model. rj is the weight of
the jth labeler.

• The term γ

2 ∥w∗
∥
2 is used to confine the capacity of the func-

tion space containing f ∗(x). The traditional SVM uses slack
variables to balance the distance from the instances to the
hyper-plane. Distinctively, our method uses privileged data
to adjust the distance from the instances to the hyper-plane.
Thus, the constraint (w∗, x∗

i ) + b∗
≥ 0 is imposed. When it

has γ = 0 and θ = 1, the privileged information will have
no effect on the model, and problem (4) is degraded into a
standard SVM model with weak labels.

• yji ∈ {1, −1} is the label of instance xi, which is annotated by
the jth labeler. It is available to us. rj is the weight of the jth
labeler, which is unknown to us and needed to be optimized.
We calculate the label Yi of instance xi by Yi =

∑m
j=1 rjy

j
i.

In traditional supervised learning, each labeler is given a
weight equally or randomly, which leads to the ambiguity
of instance labels. Different from the traditional supervised
learning methods, we incorporate the labeler weight in the
model and optimize it in the learning process.
4

.3. PLWB optimization

The variables w, w∗, b, b∗, ξ ∗ and rj are unknown to us, and
roblem (4) is difficult to resolve. In the following, a heuris-
ic framework will be employed to calculate these unknown
ariables.
Specifically, the heuristic framework is comprised with two

teps. In the first step, we fix the weight rj = rj, and obtain the
alues of w, w∗, ξ ∗, b and b∗ by solving the problem (5). Then,

we fix w, w∗, b and b∗, and get the values of rj by solving the
problem (14). The above two steps repeat alternately until the
termination criterion is met. In the following, we show the two
steps in details.

3.3.1. Fix the weight r and optimize the classifier
We fix rj to be rj. Then, the first set of constraints in problem

4) is transformed into
∑m

j=1(ry
j
i)[(w, xi) + b] ≥ 1 − [(w∗, x∗

i ) +

b∗
]−ξ ∗

i . Based on these, the objective function (4) is changed into

min
ξ∗
i ≥0

1
2
∥w∥

2
+

γ

2
∥w∗

∥
2
+ θC

l∑
i=1

ξ ∗

i + C
l∑

i=1

[(w∗, x∗

i ) + b∗
]

s.t.
m∑
j=1

(rjy
j
i)[(w, xi) + b] ≥ 1 − [(w∗, x∗

i ) + b∗
] − ξ ∗

i ,

(w∗, x∗

i ) + b∗
≥ 0.

(5)

When the weight rj is fixed, the above function is a quadratic
optimization (QP) problem. It can be resolved by applying the
Lagrange method. The Lagrange function of problem (5) can be
given as follows.

L(w, w∗,b, b∗, α, β, σ ) =

1
2
∥w∥

2
+

γ

2
∥w∗

∥
2
+ C

l∑
i=1

((w∗, x∗

i ) + b∗) + θC
l∑

i=1

ξ ∗

i

−

l∑
i=1

αi[(
m∑
j=1

ryji)((w, xi) + b) − 1

+ ((w∗, x∗

i ) + b∗) + ξ ∗

i ]

−

l∑
i=1

βi[(w∗, x∗

i ) + b∗
] −

l∑
i=1

σiξ
∗

i

(6)

where αi ≥ 0, βi ≥ 0 and σi ≥ 0 are Lagrangian multiples. We dif-
ferentiate the Lagrange function (6) with respect to w, w∗, b, b∗

and ξ ∗

i and set the derivatives to be zero. The following equations
can be obtained.

w =

l∑
i=1

αi(
m∑
j=1

rjy
j
i)xi, (7)

w∗
=

1
γ
(

l∑
i=1

αix∗

i +

l∑
i=1

βix∗

i − C
l∑

i=1

x∗

i ), (8)

l∑
i=1

αi(
m∑
j=1

rjy
j
i) = 0, (9)

l∑
i=1

C −

l∑
i=1

αi −

l∑
i=1

βi = 0, (10)

C − αi − σi = 0. (11)
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By substituting Eqs. (7)–(11) into problem (6), the dual form
(12) can be obtained.

max
α,β,σ

1
2

l∑
i,j=1

αiαj(
m∑

j1=1

rj1yi)(
m∑

j2=1

rj2yj)(xi, xj)

+
1
2γ

l∑
i,j=1

αiαj(αi + βi − C)(αj + βj − C)(x∗

i , x
∗

j )

s.t.
l∑

i=1

(αi + βi − C) = 0,

l∑
i=1

αi(
m∑
j=1

rjy
j
i) = 0,

0 ≤ αi ≤ θC, 0 ≤ βi, 0 ≤ σi.

(12)

We can obtain the Lagrange multipliers α, β and σ by solving
he dual form (12). A new instance xT can be predicted by using
he following function.

(xT ) =

l∑
i=1

αi(
m∑
j=1

rjy
j
i)(xi, xT ) + b. (13)

.3.2. Fix the classifier and update the weight r
We can acquire the Lagrange multipliers by resolving the dual

orm (12). Based on these Lagrange multipliers, we can calculate
, w∗, b and b∗. In problem (4), after w, w∗, b and b∗ are known,

we can optimize the weight r .
The weight r can be updated by optimizing the classification

errors ξ ∗. Hence, we obtain the following problem:

min
r,ξ

l∑
i=1

ξ ∗

i

s.t.
m∑
j=1

(rjy
j
i)[(w, xi) + b] ≥ 1 − [(w∗, x∗

i ) + b∗
] − ξ ∗

i ,

m∑
j=1

rj = 1,

0 ≤ rj ≤ 1.

(14)

Since the values of w, w∗, b and b∗ are available, (14) is a
linear programming (LP) problem. We can resolve it by using
off-the-shelf LP solvers.

3.3.3. Heuristic framework
To solve problem (4), we put forward a heuristic framework.

Our algorithm includes two steps: (1) obtaining the classifier
when the weight r is fixed; (2) fixing the classifier to update the
weight r . We conduct the above two steps alternately until the
algorithm stops. The pseudo codes of our method are illustrated
in Algorithm 1. Specifically, we input the training instances, priv-
ileged instances, as well as the parameters γ , C, θ and ϵ. Here,
the parameters γ , C and θ tradeoff the different terms in problem
(4), and ϵ determines the termination of the PLWB algorithm. Let
Fval(t) be the objective function value of problem (5) and t be the
number of iterations. Firstly, initialize Fval(t) = ∞ and t = 0.
Then, the iteration begins. We obtain w, w∗, b and b∗ by solving
problem (5). If it has t = 1, namely in the first iteration, we
initialize the labeler weights r . Otherwise, we update r based on
problem (14) by fixing w, w∗, b and b∗. After the labeler weights
r are obtained, we fix them and solve problem (5) to obtain
5

w, w∗, b and b∗. Define Fmax be the maximum value between
|Fval(t − 1)| and |Fval(t)|, where |Fval(t − 1)| and |Fval(t)| are the
absolute values of Fval(t − 1) and Fval(t), respectively. |Fval(t)| −

|Fval(t − 1)| is the difference of Fval in two consecutive iterations.
If the proportion of |Fval(t)| − |Fval(t − 1)| and Fmax is smaller
than a threshold ϵ, i.e., |Fval(t)| − |Fval(t − 1)| < ϵFmax, the PLWB
algorithm terminates. The threshold ϵ is usually set to be a small
value. As in [29], we set ϵ to be 0.1 in the experiments. Lastly, we
output the decision functions f (x) = (w, x) + b for the training
instances and f ∗(x) = (w∗, x) + b∗ for the privileged instances.

Algorithm 1 PLWB algorithm
Input: Training instances, privileged instances, γ , C , θ and ϵ

Output: f (x) and f ∗(x).
1: t = 0;
2: Initialize Fval(t) = ∞;
3: repeat
4: t = t + 1;
5: if t = 1 then
6: Initialize r;
7: else
8: Update r based on (14) by fixing w, w∗, b and b∗;
9: end if
10: Substitute r and solve problem (5);
11: Compute w and w∗ according to Eqs. (7)-(8), respectively;
12: Let Fval(t) be the decision function value of problem (5);
13: Let Fmax = max{|Fval(t − 1)|, |Fval(t)|};
14: until |Fval(t) − Fval(t − 1)| < ϵFmax
15: Return f (x) = (w, x) + b and f (x∗) = (w∗, x) + b∗.

4. Experiments

We compare PLWB with six state-of-the-art algorithms on
four real-world datasets — Handwritten (HW), Caltech-101,
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Animals-
with-Attributes (AWA).

4.1. Dataset description

To verify the effectiveness of PLWB, experiments are con-
ducted on several real-world datasets, including Handwritten
(HW) [30], Caltech-101 [31], Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and Animals-with-Attributes (AWA) [32]. The
collection and preprocessing of these datasets are described as
follows.

4.1.1. Data collection
Handwritten (HW) dataset: It is available in the UCI machine

learning repository. It contains ‘‘0’’ to ‘‘9’’ handwritten digits, and
has 10 classes. Each class has 200 handwritten digits which are
transformed into binary images. The sample digits can be seen in
Fig. 2.

Animals-with-Attributes (AwA) dataset: It contains 50 animal
classes. The number of images in the 50 classes is 30475 in total.
Since there are too many classes, we pick up 20 classes from this
dataset to perform the experiments. The selected classes include
‘‘weasel’’, ‘‘beaver’’, ‘‘bobcat’’, ‘‘tiger’’, ‘‘collie’’, ‘‘horse’’, ‘‘lion’’ and
so on. These 20 classes contain 6180 images which are used in the
experiment. Fig. 3. shows the sample images in the 20 classes.

Caltech-101 dataset: It is provided by [31] and is for the task
of object recognition. This dataset is comprised of 101 classes and
8677 images. Since the Caltech-101 dataset is highly imbalanced,
we conduct experiments on the 10 top classes, i.e., ‘‘Boat’’, ‘‘Tree’’,
‘‘Bass’’, ‘‘Crab’’, ‘‘Cup’’, ‘‘Dog’’, ‘‘Sofa’’, ‘‘Car’’, ‘‘Bus’’ and ‘‘Cow’’. The
sample images from the Caltech-101 dataset are shown in Fig. 4.
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Fig. 2. Sample images from the Handwritten (HW) dataset.
Fig. 3. Sample images from the Animals-with-Attributes (AWA) dataset.
Fig. 4. Sample images from the Caltech-101 dataset.
Fig. 5. Sample images from the ADNI database.
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset:
t consists of magnetic resonance imaging (MRI) and positron
mission tomography (PET) images from 202 ADNI participants
hich include 51 Alzheimer’s dementia (AD) patients, 99 mild
ognitive impairment (MCI) patients, and 52 normal controls
NC). The sample images of MRI and PET from the ADNI dataset
re shown in Fig. 5.
6

4.1.2. Data preprocessing
The above datasets are multi-class classification datasets. We

take the following procedures to transform these multi-class
classification datasets into weakly labeled binary class classifi-
cation datasets. Firstly, we transform the multi-class class clas-
sification datasets into binary class classification datasets. For
a dataset with K classes, one class is chosen as the positive
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Table 1
Details of the datasets used in the experiments.
Dataset Total Inst. Train Inst. Test Inst. Privileged Inst. Train Dim. Privileged Dim.

HW 2000 1800 200 1800 76 64
AwA 6180 5562 618 5562 256 252
Caltech-101 8677 867 867 7803 81 252
ADNI 200 20 20 180 93 93
Table 2
Classification accuracy on the Handwritten (HW), Caltech-101 and ADNI datasets.
Dataset SVM SVM+ R-CTSVM+ L2- SVM+ R-SVM+ S-ISCN+ PLWB

HW0 88.71 ± 1.29 91.11 ± 0.63 90.72 ± 0.71 91.74 ± 0.64 91.83 ± 0.59 90.17 ± 0.66 96.95 ± 0.24
HW1 83.17 ± 1.36 84.25 ± 0.54 88.75 ± 0.67 89.37 ± 0.81 90.55 ± 0.77 87.33 ± 0.71 94.94 ± 0.32
HW2 86.13 ± 1.13 90.57 ± 0.71 88.33 ± 0.92 90.71 ± 1.04 90.47 ± 0.93 87.12 ± 0.83 95.72 ± 0.22
HW3 87.65 ± 1.38 90.28 ± 1.24 88.47 ± 0.75 92.53 ± 0.63 92.32 ± 0.94 89.43 ± 0.69 96.47 ± 0.48
HW4 88.19 ± 1.36 90.72 ± 1.08 89.93 ± 1.21 91.17 ± 0.72 90.73 ± 0.78 90.22 ± 0.74 94.92 ± 0.57
HW5 85.13 ± 1.22 91.28 ± 0.96 89.74 ± 0.87 91.42 ± 0.93 90.63 ± 1.04 88.63 ± 0.82 94.25 ± 0.49
HW6 88.92 ± 1.05 90.17 ± 1.23 91.15 ± 0.87 91.34 ± 0.63 91.97 ± 0.74 91.37 ± 0.91 95.15 ± 0.38
HW7 84.15 ± 0.87 89.21 ± 0.91 89.77 ± 1.24 88.43 ± 0.86 87.52 ± 0.75 86.39 ± 0.93 93.35 ± 0.37
HW8 87.42 ± 0.92 90.53 ± 0.88 89.36 ± 0.73 91.25 ± 1.23 90.34 ± 0.74 88.96 ± 0.87 94.72 ± 0.42
HW9 87.42 ± 1.16 91.35 ± 0.97 89.56 ± 0.85 92.17 ± 1.04 91.71 ± 0.77 90.15 ± 0.93 96.15 ± 0.56
Cal101.boat 74.12 ± 0.93 78.56 ± 0.92 80.53 ± 0.84 81.25 ± 1.03 79.55 ± 0.78 81.43 ± 0.69 86.31 ± 0.44
Cal101.tree 73.52 ± 0.87 77.42 ± 0.83 75.34 ± 0.71 77.98 ± 0.96 76.32 ± 1.02 78.21 ± 0.85 83.25 ± 0.45
Cal101.bass 80.14 ± 0.99 83.36 ± 1.21 82.55 ± 1.16 82.97 ± 0.87 83.16 ± 0.95 82.94 ± 0.83 88.78 ± 0.52
Cal101.crab 77.44 ± 0.97 79.58 ± 0.82 78.41 ± 1.08 80.75 ± 1.13 81.35 ± 0.67 82.33 ± 0.77 86.96 ± 0.42
Cal101.cup 76.13 ± 1.12 77.42 ± 0.89 80.82 ± 0.94 80.79 ± 0.85 79.57 ± 0.72 80.17 ± 0.95 84.36 ± 0.52
Cal101.dog 74.26 ± 0.81 77.14 ± 0.74 76.26 ± 0.61 77.35 ± 1.07 76.47 ± 0.76 75.68 ± 0.79 81.64 ± 0.44
Cal101.sofa 71.25 ± 0.77 72.53 ± 0.86 73.71 ± 0.75 72.95 ± 0.96 73.06 ± 0.72 72.91 ± 0.81 80.65 ± 0.55
Cal101.car 70.25 ± 0.92 73.63 ± 1.16 71.95 ± 0.73 73.46 ± 0.87 72.46 ± 0.69 74.11 ± 0.88 80.23 ± 0.57
Cal101.bus 77.55 ± 0.94 80.78 ± 0.86 81.35 ± 0.77 80.76 ± 0.65 81.11 ± 1.04 81.36 ± 0.94 85.35 ± 0.49
Cal101.cow 80.27 ± 0.72 82.34 ± 1.13 81.75 ± 0.87 82.34 ± 0.89 81.97 ± 0.91 82.37 ± 0.88 86.13 ± 0.56
ADNI.AD 82.27 ± 0.62 88.64 ± 0.73 82.95 ± 0.47 88.24 ± 0.59 84.77 ± 0.61 85.33 ± 0.75 90.32 ± 0.46
ADNI.NC 86.71 ± 0.82 87.43 ± 0.93 86.54 ± 0.72 88.14 ± 0.69 88.27 ± 0.73 85.96 ± 0.91 91.27 ± 0.49
ADNI.MCI 84.23 ± 0.53 87.41 ± 0.63 85.51 ± 0.67 87.64 ± 0.92 88.57 ± 0.71 86.87 ± 0.72 93.32 ± 0.65
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class and the other classes are regarded as the negative class.
K sub-datasets can be formed. In this way, a number of binary
class sub-datasets from the HW, Caltech-101, ADNI and AWA
datasets can be obtained, as shown in Tables 2 and 3. Specif-
ically, the HW dataset contains 10 classes and thus we obtain
10 sub-datasets, i.e., HW0–HW9. The Caltech-101 dataset has 10
classes and we get 10 sub-datasets, i.e., Cal101.boat, Cal101.tree,
Cal101.bass and so on. The ADNI dataset consists of 3 classes and
3 sub-datasets, i.e., ADNI.AD, ADNI.NC and ADNI.MCI, are attained.
The AWA dataset is comprised of 20 classes and 20 sub-datasets,
i.e., AwA.bat, AwA.beaver, AwA.cow and so on, are achieved, as
shown in Table 3.

Secondly, we follow the routine in [33] to form the weak
abel for each image in the sub-datasets. Specifically speaking,
e set the number of labelers to be ten, and randomly allocate
weight rj to each labeler. This weight indicates the importance

of each labeler. Then, we assign the label for each instance. If
the instance’s ground-truth label is positive, we let six labelers
assign yjk as +1, and the other labelers assign yjk as −1. If the
nstance’s ground-truth label is negative, we let six labelers assign
j
k as +1, and the other labelers assign yjk as +1. Lastly, we use
k =

∑m
j=1 rjy

j
k to calculate the label of an instance. The instance

s relabeled as positive if it has Yk ≥ 0. Otherwise, it is relabeled
s negative. In the above procedure, every labeler gives a label to
ach instance, and this label is associated with a random weight.
he initial label of an instance is computed by Yk =

∑m
j=1 rjy

j
k.

et rWB denote the percentage of correctly labeled instances. In
ection 4.4, we set rWB to be 80%. That is to say, 80% of the
raining instances are correctly labeled according to their ground-
ruth labels. In Section 4.5, we let rWB be 80%, 60%, 40% and 20%,
espectively, and investigate the performance of our method and
aselines with different percentages of weak labels.
Lastly, we extract the training features and privileged features

rom each image in the sub-datasets. For the HW sub-datasets, we
se the Fourier coefficients of the character shapes (FOU) feature
7

ith 76 attributes as the training feature and the Karhunen-love
oefficients (KAR) feature with 64 attributes as the privileged
eature. For the AwA sub-datasets, the color histogram feature
ith 256 attributes is extracted as the training feature and the
istogram of oriented gradients feature (HOG) with 252 attributes
s as the privileged feature. For the Caltech-101 sub-datasets,
e utilize the global image descriptor (GIST) feature with 81
ttributes as the training feature and the HOG feature with 252
ttributes as the privileged feature. For the ADNI sub-datasets, we
xtract the gray matter of 93 regions of interest (ROI) from the
RI image as the training feature and the average intensity of
ach ROI in the PET image as the privileged feature. Table 1 shows
he dimension numbers of the training features and privileged
eatures for the experimental datasets.

.1.3. Data output
After the above data preprocessing, we obtain 10 sub-datasets

rom the HW dataset, 20 sub-datasets from the AWA dataset, 3
ub-datasets from the ADNI dataset and 10 sub-datasets from the
altech-101 dataset. Tables 2 and 3 show all the obtained sub-
atasets. In each sub-dataset, the instances are weakly labeled
nd contain both the training features and privileged features.
able 1 presents the total instance number (Total Inst.), training
nstance number (Train Inst.), testing instance number (Test Inst.),
rivileged instance number (Privileged Inst.), dimension of train-
ng instances (Train Dim.), and dimension of privileged instances
Privileged Dim.) in the experimental datasets. The subsequent
xperiments will be conducted on these sub-datasets.

.2. Baselines and parameter setting

.2.1. Baselines
We compare PLWB with six baselines, i.e., SVM, SVM+ [1],

obust capped L1-norm twin support vector machine with priv-
leged information (R-CTSVM+) [34], L2-SVM+ [5], L 1

2
-norm-

regularization-based sparse ISCN+ (S-ISCN+) [35] and robust
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Table 3
Classification accuracy on the Animals-with-Attributes (AWA) dataset.
Dataset SVM SVM+ R-CTSVM+ L2-SVM+ R-SVM+ S-ISCN+ PLWB

AwA.bat 63.74 ± 0.92 66.56 ± 0.77 70.45 ± 0.83 72.15 ± 0.95 71.35 ± 0.87 72.33 ± 0.87 76.24 ± 0.45
AwA.beaver 72.14 ± 1.05 80.55 ± 1.12 79.15 ± 1.22 81.56 ± 0.94 82.38 ± 0.82 81.92 ± 1.03 86.33 ± 0.52
AwA.cow 65.15 ± 0.97 68.75 ± 0.92 70.58 ± 0.74 61.26 ± 0.82 69.36 ± 1.04 68.31 ± 0.83 75.66 ± 0.53
AwA.weasel 67.83 ± 0.97 60.68 ± 0.95 69.18 ± 0.81 70.36 ± 0.83 70.98 ± 0.74 67.34 ± 0.91 74.67 ± 0.43
AwA.collie 63.91 ± 0.84 65.85 ± 1.21 68.11 ± 0.98 69.27 ± 0.71 70.78 ± 0.95 65.33 ± 1.18 74.56 ± 0.51
AwA.tiger 68.25 ± 1.23 70.77 ± 0.98 61.25 ± 0.72 70.92 ± 0.86 61.16 ± 0.77 69.33 ± 0.97 75.93 ± 0.35
AwA.deer 65.16 ± 0.92 68.38 ± 0.75 71.98 ± 0.86 75.37 ± 0.98 75.65 ± 1.23 71.23 ± 0.78 80.66 ± 0.42
AwA.fox 74.11 ± 1.02 77.46 ± 1.23 76.16 ± 0.75 78.36 ± 0.86 77.25 ± 0.92 78.12 ± 0.86 83.64 ± 0.46
AwA.panda 75.46 ± 0.85 76.83 ± 0.81 79.45 ± 0.99 76.13 ± 1.21 78.94 ± 0.94 77.36 ± 0.85 83.43 ± 0.52
AwA.gorilla 74.35 ± 0.91 75.56 ± 0.85 79.37 ± 1.22 79.16 ± 0.96 75.37 ± 1.21 77.32 ± 0.98 84.77 ± 0.33
AwA.horse 72.17 ± 0.93 73.56 ± 0.83 75.44 ± 0.98 76.95 ± 0.99 74.12 ± 0.75 76.93 ± 0.91 81.98 ± 0.42
AwA.whale 77.55 ± 0.96 79.26 ± 0.94 79.13 ± 0.87 77.63 ± 1.06 78.41 ± 0.99 79.61 ± 0.93 84.67 ± 0.42
AwA.moose 70.46 ± 0.88 76.51 ± 0.91 75.12 ± 1.23 73.33 ± 1.04 75.15 ± 0.81 76.53 ± 0.89 81.57 ± 0.55
AwA.otter 82.35 ± 0.78 88.77 ± 0.97 86.13 ± 0.85 83.68 ± 1.24 87.55 ± 1.03 86.34 ± 0.92 91.26 ± 0.33
AwA.lion 83.15 ± 0.85 84.66 ± 0.98 86.54 ± 0.97 87.59 ± 0.63 88.35 ± 0.75 86.71 ± 0.74 92.75 ± 0.42
AwA.bear 80.55 ± 0.86 81.75 ± 0.71 87.34 ± 0.88 88.55 ± 0.67 87.19 ± 1.06 85.69 ± 0.73 92.43 ± 0.31
AwA.ox 80.95 ± 0.76 81.54 ± 0.84 87.51 ± 0.92 86.54 ± 0.91 86.45 ± 0.75 84.32 ± 0.89 93.66 ± 0.42
AwA.zebra 83.35 ± 1.15 87.56 ± 0.65 86.57 ± 0.92 86.16 ± 0.78 86.47 ± 0.84 87.11 ± 0.73 91.87 ± 0.42
AwA.sheep 81.86 ± 0.94 87.26 ± 0.79 87.55 ± 0.85 85.14 ± 1.05 89.26 ± 0.77 87.63 ± 0.88 93.65 ± 0.44
AwA.skunk 81.46 ± 0.95 82.57 ± 0.86 88.17 ± 0.97 84.16 ± 1.03 87.17 ± 1.15 85.71 ± 0.92 91.35 ± 0.45
AwA.pig 80.46 ± 0.84 81.53 ± 1.21 84.28 ± 0.95 87.97 ± 0.87 84.16 ± 1.06 86.13 ± 0.99 93.66 ± 0.51
AwA.walrus 84.25 ± 0.93 86.56 ± 0.89 85.17 ± 0.79 88.36 ± 1.12 87.27 ± 0.86 87.91 ± 0.91 92.35 ± 0.42
AwA.wolf 81.28 ± 0.95 83.27 ± 0.89 87.16 ± 0.78 86.18 ± 1.06 83.38 ± 0.97 85.99 ± 0.92 90.58 ± 0.31
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support vector machine with privileged information (R-SVM+)
[36]. Among these baselines, SVM is a typical binary classifi-
cation method, which does not utilize privileged information.
SVM+, R-SVM+, L2-SVM+ and R-CTSVM+ are SVM-based privi-
eged information learning methods. S-ISCN+ is a network-based
rivileged information learning method.
1. SVM: It is the standard SVM, which trains the classifier by

sing only the training data and does not utilize the privileged
ata.
2. SVM+[1]: It is a typical privileged information learning

ethod, which introduces the privileged information into SVM
nd modifies the slack variables according to the privileged in-
ormation.

3. L2-SVM+[5]: It applies L2-loss in the ρ-SVM framework
nd replaces the slack variables with correcting functions that are
btained from the privileged information.
4. R-CTSVM+[34]: It is a robust capped L1-norm twin SVM,

hich considers the abnormal points by introducing the capped
1-norm and introduces the privileged information in the learn-
ng process.

5. R-SVM+[36]: It is a robust SVM+ algorithm, which ad-
resses the potential noises in the training data and privileged
ata.
6. S-ISCN+[35]: It is a network-based method, which involves

the privileged information into learning the stochastic configura-
tion network (SCN).

4.2.2. Parameter setting
In the experiment, the linear kernel is utilized. For the base-

ines, we follow the same settings in their corresponding papers
o tune the parameters. SVM has one parameter C , which is cho-
en in 2[−2,−1,...,3,4]. SVM+ and L2-SVM+ have two parameters
and γ . Parameter C is selected in 2[−2,−1,...,3,4]. Parameter γ

s picked up from 10[−2,−1,...,3,4]. R-SVM+ has four parameters
, λ, γ and σ . Parameter C is selected in 2[−2,−1,...,1,2]. Param-
ter γ is picked up from 10[−2,−1,...,1,2]. Parameter λ is chosen
rom 10[−5,−4,...,0,1]. As in [1], σ should be a relatively large
alue and is fixed to be 1000. R-CTSVM+ has five parameters
1, C2, λ, ϵ1 and ϵ2. We let C1 = C2 and ϵ1 = ϵ2. Param-
ters C1 and C2 are selected in 10[−4,...,−2,−1]. Parameter λ is

picked up from 10[−5,−4,...,0,1]. Parameters ϵ1, and ϵ2 are chosen in
0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2}. S-ISCN+ has
hree parameters η, γ and µ. Parameters η and µ are selected in
8

0[−6,−5,...,5,6]. γ is picked up from the range of 10[−5,−4,...,−1,0].
or PLWB, ϵ controls the convergence of our algorithm. Following
he same routine in [29], ϵ is set to be 0.1. θ adjusts the penalty
etween the correcting function and the training error ξ ∗. As
uggested in [1], the value of θ should be large enough and we fix
t to be 1000. Hence, there are two parameters C and γ needed
o be tuned in PLWB. C and γ are picked up from 2[−2,...,3,4] and
0[−2,...,2,3], respectively.
As in [37], we employ two-fold cross validation to deter-

ine the optimal parameters. Specifically, each experimental
ub-dataset is split into two halves. One half is considered as the
raining set and the other half is treated as the testing set. The
lassification accuracy is recorded. The parameter combination
hich leads to the highest classification accuracy is selected as
he optimal parameters. It is noted that the above procedure is
pplied only once for each sub-dataset. Once the parameters are
etermined, they are used in all the subsequent experiments.
fter the optimal parameters are fixed, ten-fold cross validation
s applied to the sub-datasets. The average result with ten-fold
ross validation is reported as the final one.

.3. Implementation setup and working environment

We execute the experiments in Matlab on the laptop with a
.2-GHz processor and 4-GB memory. During the optimization
rocess, the QP problems in SVM, SVM+, R-CTSVM+, L2-SVM+,
-SVM+ and PLWB are solved via the QP toolbox in MATLAB. The
odes of our method can be available from https://github.com/
zx2god/PLWB.git.

.4. Experimental results

Tables 1 and 2 exhibit the classification accuracy of SVM,
VM+, L-2 SVM+, R-CTSVM+, R-SVM+, S-ISCN+ and PLWB on
he sub-datasets. From Tables 1 and 2, we can see that PLWB
erforms better than the baselines. For example, on the HW0
ub-dataset which considers the digital ‘‘0’’ as positive and the
ther digitals as negative, the classification accuracy of PLWB is
6.95, which is explicitly higher than SVM (88.71), SVM+ (91.11),
-CTSVM+ (90.72), L2-SVM+ (91.74), R-SVM+ (91.83) and S-
SCN+ (90.17). Among all the HW sub-datasets, PLWB obtains a
inimum of 2.83 and up to 11.77 improvements, compared with
VM, SVM+, R-CTSVM+, L2-SVM+, R-SVM+ and S-ISCN+.

https://github.com/yzx2god/PLWB.git
https://github.com/yzx2god/PLWB.git
https://github.com/yzx2god/PLWB.git
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In Tables 1 and 2, it can be seen that SVM+, R-CTSVM+,
2-SVM+, RSVM+ and S-ISCN+ have better performance than
VM. On the Cal101.bass sub-dataset, the corresponding accu-
acy of SVM+, R-CTSVM+, L2-SVM+, R-SVM+ and S-ISCN+

s 83.36, 82.55, 82.97, 83.16 and 82.94, which is higher than
VM (80.14). Among all the Caltech-101 sub-datasets, SVM+, R-
TSVM+, L2-SVM+, R-SVM+ and S-ISCN+ obtain a minimum
f 1.28 and up to 7.31 improvements, compared with SVM. The
eason is that SVM uses only the training information to learn
he classifier, while SVM+, R-SVM+, R-CTSVM+, L2-SVM+ and
-ISCN+ are privileged information learning methods, which can
ncorporate both the training information and privileged learning
nto constructing the classifier. The privileged data can provide
dditional information which can be used to refine the classifier
nd boost the classification result. Moreover, it is observed that
LWB obtains explicitly better classification accuracy than SVM+,
-SVM+, R-CTSVM+, L2-SVM+ and S-ISCN+. For example, the
ccuracy of PLWB is 83.64 on the AWA.fox sub-dataset, which is
igher than SVM+ (74.11), R-SVM+ (77.25), R-CTSVM+ (76.16),
2-SVM+ (78.36) and S-ISCN+ (78.12) at 9.53, 6.39, 7.48, 5.28
nd 5.52, respectively. Among all the AWA sub-datasets, PLWB
chieves a minimum of 2.49 and up to 14.77 improvements,
ompared with SVM+, R-CTSVM+, L2-SVM+, R-SVM+ and S-
SCN+. As presented in Section 4.1.2, every labeler assigns a
abel to each instance, and this label is associated with a ran-
om weight. The initial label of an instance is computed by
k =

∑m
j=1 rjy

j
k. However, SVM+, R-CTSVM+, L2-SVM+, R-

VM+ and S-ISCN+ do not consider the weak label learning
roblem. Hence, they learn the classifiers directly on the initial
abels in which the weights of labelers are randomly assigned
nd do not change in the subsequent training. Different from
hese methods, PLWB takes the weak label learning problem
nto account and continuously updates the weights of labelers
o obtain the overall optimization. The better performance of
LWB over SVM+, R-SVM+, R-CTSVM+, L2-SVM+ and S-ISCN+

onfirms the effectiveness of our method in refining the weights
f labelers.
Furthermore, the standard deviations on the sub-datasets are

hown in Tables 1 and 2. It is observed from Tables 1 and 2 that
LWB has the smallest standard deviation among all the meth-
ds. Taking the HW9 sub-dataset as an example, the standard
eviations of SVM, SVM+, R-CTSVM+, L-2 SVM+, R-SVM+ and
-ISCN+ are 1.16, 0.97, 0.85, 1.04, 0.77 and 0.93, respectively,
hile that of our method is 0.56. It is seen that PLWB can
chieve a more stable performance than the baselines. The base-
ine methods assume that the instance is accurately labeled and
heir learning models are constructed based on this assumption.
owever, when there exist weak labels in the data, the learnt
odels may be more sensitive to weak labels and less stable for

e-sampling. By contrast, PLWB considers the weak label learning
roblem. Our model is less sensitive to weak labels and more
table for re-sampling.

.5. Performance with different percentage of correctly labeled in-
tances

We evaluate our method by setting different percentage rWB of
he correctly labeled instances. Fig. 6 presents the classification
ccuracy of our method and the baselines when the percentage
WB of correctly labeled instances varies from 20% to 80%. In
ig. 6, the x-axis is the percentage of correctly labeled instances
nd the y-axis is the classification accuracy. In Fig. 6, when the
ercentage of correctly labeled instances increases, the classifi-
ation accuracy of all methods goes up synchronously. This is
ecause as the increase of correctly labeled instances, the dataset

ontains less weakly labeled information and the performance of t

9

lassifiers improves. Moreover, PLWB obtains consistently better
lassification performance than the baselines — SVM, SVM+, R-
TSVM+, L2-SVM+, R-SVM+ and S-ISCN+. The baselines do not
onsider the weak label learning problem and the weakly la-
eled data limits their classification accuracy. Distinctively, PLWB
dopts a heuristic framework to update the weight of each labeler
nd incorporates these weights into boosting the performance of
lassifiers.

.6. Parameter sensitivity analysis

We investigate the influence of parameters C and γ on our
odel. The parameter C determines the importance of the cor-

ection function which is obtained from the privileged data to
he whole model. The parameter γ balances the two margins,
.e., ∥w∥

2 and ||w∗
||
2. In the following, we take two sub-datasets

i.e., HW0 and AwA.tiger) as examples to illustrate the sensitivity
f these two parameters. In Fig. 7(a) and (b), we fix the parameter
to be the optimal value and vary C from 0.25 to 16. In Fig. 7(c)

nd (d), we fix the parameter C to be the optimal value and
ary γ from 0.01 to 1000. In these figures, we can observe that
atisfactory accuracy can be obtained when the values of C and γ

re relatively large. This may be because both C and γ are related
o the privileged data. When the values of C and γ are relatively
arge, the correction function f ∗(x∗

i ) = (w∗, x∗

i ) + b∗ and the
argin ∥w∗

∥
2 will greatly affect the performance of the model.

t implies that the utilization of privileged data can effectively
nhance the classification performance.

.7. Time analysis

In the following, we analyze the time of learning parameters,
uilding models and predicting new instances for the proposed
LWB method and the privileged information learning methods
i.e., SVM+, L2-SVM+, R-CTSVM+, R-SVM+ and S-ISCN+).

The time of learning parameters is discussed. Before the time
f learning parameters is presented, we introduce the parameters
hich are needed to be tuned. In SVM+ and L2-SVM+, there
re two parameters C and γ . In R-SVM+, there are three pa-
ameters C, γ , and λ.1 In R-CTSVM+, let C1 = C2 and ϵ1 = ϵ2,
nd thus there are three parameters C1, ϵ1 and λ. In S-ISCN+,
here are three parameters γ , η and µ. In PLWB, there are two
arameters C and γ .2 The details of parameter setting can refer
o Section 4.2.2. Fig. 8 shows the parameter learning time of
LWB and the baselines. We have the following observations
rom Fig. 8. Firstly, L2-SVM+ has the least parameter learning
ime. It is a least-squares-based method which does not need to
olve the inequality constraints, but equality constraints instead.
herefore, L2-SVM+ is the fastest method. It is noted that the
roposed PLWB method can be modified into the least squares
orm which can greatly improve the efficiency of our method.
econdly, PLWB takes more time than SVM+ and R-SVM+. This
ay be because SVM+ and R-SVM+ do not take the weak label
roblem into account and directly utilize the initial labels to
uild the privileged information learning classifier. Different from
hese methods, we consider the weak label problem and employ
heuristic framework to update the weights of labelers, such

hat the classification accuracy can be improved by optimizing
he instance labels. Thirdly, R-CTSVM+ has a higher parameter

1 In R-SVM+, the parameter σ should be set to be a relatively large value,
s suggested in [1]. Thus, σ is fixed to be 1000 and does not need to be tuned.
2 In PLWB, the parameter θ is fixed to be 1000, as done in R-SVM+.
oreover, the parameter ϵ controls the termination of our algorithm, which
hould be set to be a small value. Thus, ϵ is fixed to be 0.1 and does not need
o be tuned.
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earning time than the other SVM-based methods (i.e., L2-SVM+,
VM+, R-SVM+ and PLWB). It is an iterative learning method
nd has three parameters to be tuned, while the other SVM-
ased methods have only two parameters. Lastly, S-ISCN+ has
he highest parameter learning time among all the methods. It
eeds to tune there parameters and is a network-based method.
hus, it has the highest parameter learning time.
Moreover, the time of building models is investigated. The

verage time of building models is shown in Fig. 9. On the
ne hand, PLWB is relatively slower than L2-SVM+, SVM+ and
-SVM+. This is because PLWB takes the weak label problem
nto account, and extra time is needed to optimize the labeler
eights. Different from PLWB, L2-SVM+, SVM+ and R-SVM+

o not consider the weak label problem. Although they have a
aster model building time, their classification accuracy may be
imited. For example, on the AwA.wolf sub-dataset, the accuracy
f PLWB is 90.58, while that of L2-SVM+, SVM+ and R-SVM+
10
s 86.18, 83.27 and 83.38, respectively. PLWB has higher classifi-
ation accuracy than L2-SVM+, SVM+ and R-SVM+ at 4.4, 7.31
nd 7.2, respectively. On the other hand, PLWB is faster than R-
TSVM+. R-CTSVM+ adopts an iterative framework and involves
he matrix inversion which makes it have higher model building
ime than PLWB.

Lastly, the time of predicting new instances is studied. Fig. 10
hows the average time of predicting new instances. It can be
een that SVM+, R-SVM+ and PLWB have similar predicting time.
hey learn a hyper-plane to predict new instances and only a
mall part of the training instances (i.e., support vectors) are
ncluded in predicting instances. Thus, the time of predicting
ew instances is relatively low. Moreover, the time of L2-SVM+

nd R-CTSVM+ is higher than SVM+, R-SVM+ and PLWB. This
s because L2-SVM+ is a least-squares-based method and all
he training instances are included in predicting new instances.
ence, it has relatively high predicting time. R-CTSVM+ is a twin-
VM-based method which learns two nonparallel hyper-planes.
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Fig. 7. Performance with different parameter values.
Fig. 8. Time of selecting the optimal parameters.
hus, each new instance should go through two hyper-planes to
btain the final label and the predicting time is relatively high. At
ast, ISCN+ has the highest time to predict new instances since
it is a network-based method and each new instance should go
through a number of hidden nodes to obtain the label. Hence,
ISCN+ has higher predicting time than the SVM-based methods,
i.e., SVM+, R-SVM+, L2-SVM+, R-CTSVM+ and PLWB.

5. Conclusions and future work

5.1. Conclusions

The existing privileged information learning methods assume
that the instances are accurately labeled. They do not consider
the weak label problem. Different from these methods, in this
paper, we put forward a novel privileged learning method with
weak labels. To the best of our knowledge, this is the first attempt
11
to deal with the weak labels in privileged information learning
problems. Our method is verified on real-world datasets, includ-
ing Handwritten (HW) categorization, Animals-with-Attributes
(AWA), Caltech-101, and Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) datasets. The experimental results demonstrate
that by considering the weak label problem and optimizing the
labeler weights, our method can get superior classification per-
formance in comparison with the existing privileged information
learning algorithms.

5.2. Limitations

The limitation of our method is that we have relatively higher
training time than L2-SVM+, SVM+ and R-SVM+. This is because
we consider the weak label problem and need extra time to
optimize the labeler weights. Moreover, our training time is still
lower than R-CTSVM+ and S-ISCN+.
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Fig. 9. Time of building models.
Fig. 10. Time of predicting new instances.
.3. Future work

In the future, firstly, we would like to extend our method to an
n-line style and handle the dynamic data, such that the learn-
ng cost and performance can have a better tradeoff. Secondly,
orrelating our method with the current technologies, such as
ommunications, networks and Cloud, is also a valuable consid-
ration for our future work. Thirdly, we will adapt our method
o data aggregation, transfer learning and domain adaptation,
nd apply it on the data related to explainable AI and disease.
astly, we would like to apply our method to specific application
reas, such as investment risk evaluation, electricity consumption
orecasting and so on, and discuss the related policy implications
ombined with these application areas.
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